上述因素為實(shí)驗(yàn)帶來諸多不便。因此,選擇精準(zhǔn)、易操作的溫度控制器十分重要。鑒于上述問題,德國INTERHERENCE公司近期推出了超精準(zhǔn)可調(diào)節(jié)溫度控制模塊VAHEAT。VAHEAT是一款可廣泛應(yīng)用于光學(xué)顯微鏡的精密溫度控制模塊,可兼容市面上絕大多數(shù)的商用顯微鏡和物鏡。其特殊的智能基底將透明加熱元件與高靈敏度溫度探頭相結(jié)合,實(shí)現(xiàn)了在高清成像的同時(shí)快速和精確的溫度調(diào)節(jié),與傳統(tǒng)的加熱儀相比,VAHEAT具有非常大的優(yōu)勢(shì):
? 樣品加熱快:加熱速率可達(dá)100℃/s;
? 調(diào)節(jié)范圍廣:最高溫度可達(dá)200℃;
? 穩(wěn)定性高:0.01℃;
? 不影響成像質(zhì)量。
VAHEAT尤其適用于:
一、活細(xì)胞成像
活細(xì)胞對(duì)溫度的變化非常敏感,傳統(tǒng)的加熱儀采用大型的環(huán)境箱,溫度測量距離樣品很遠(yuǎn),溫度變化非常緩慢。顯微鏡需要幾個(gè)小時(shí)才能達(dá)到熱平衡,緩慢的平衡也意味著與溫度相關(guān)的樣品漂移更顯著。同時(shí),顯微鏡載物臺(tái)、框架和物鏡可以充當(dāng)散熱器,抵消樣品加熱系統(tǒng)的作用。在這種靜態(tài)加熱室的情況下,物鏡正下方的區(qū)域通常比試樣的其余部分低5°C。
而VAHEAT能夠?qū)崿F(xiàn)將直接對(duì)局部樣品加熱,抵消由灌注系統(tǒng)或室溫變化引入的任何外部干擾并將其與環(huán)境熱分離,避免對(duì)物鏡等溫度敏感設(shè)備產(chǎn)生影響。這種局部加熱和溫度感測具備了快速、精確的溫度變化,并且加熱速率高達(dá)100°C/s,精度高于0.1°C,可以像PCR熱循環(huán)儀一樣編程任意溫度曲線。VAHEAT能夠確保在成像過程中的精準(zhǔn)溫度控制,并且支持高分辨顯微鏡,非常適合研究溫度敏感細(xì)胞行為過程。
Institute Fresnel的Guillaume Baffou實(shí)驗(yàn)室使用VAHEAT在空間限制下,保持嗜熱菌處于60°C和70°C下并進(jìn)行成像。他們發(fā)現(xiàn)適用于大腸桿菌的培養(yǎng)條件不一定適用于其他非模式生物。大多數(shù)好氧菌在需要比空間限制環(huán)境下更多的氧氣才能成功生長。
細(xì)菌懸浮液滴在樣品池內(nèi)后,放置蓋玻片覆蓋住樣品池的一半,即可同時(shí)觀察細(xì)菌在開放環(huán)境和空間限制下的生長。結(jié)果表明,大腸桿菌和羅伊氏乳桿菌兩種兼性厭氧菌在開放環(huán)境和空間限制下均能夠正常生長,且倍增時(shí)間相似;而嗜熱脂肪芽孢桿菌和嗜熱棲熱菌兩種好氧菌在空間限制下生長明顯受限。實(shí)驗(yàn)過程中,VAHEAT用于保持不同種類細(xì)菌在恒溫狀態(tài)下生長。
圖a-c:大腸桿菌在37°C下生長0小時(shí),1小時(shí)25分鐘和2小時(shí)50分鐘的圖像。
圖d-f:羅伊氏乳桿菌(Lactobacillus reuteri)在35°C下生長0小時(shí),2小時(shí)20分鐘和4小時(shí)40分鐘的圖像。
圖g-i:嗜熱脂肪芽孢桿菌(Geobacillus stearothermophilus)在60°C下生長0小時(shí),1小時(shí)和2小時(shí)的圖像。
圖j-l:嗜熱棲熱菌(Thermus thermophilus)在70°C下生長0小時(shí),1小時(shí)15分鐘和2小時(shí)30分鐘的圖像。所有圖像中,蓋玻片位于底部,以粗黑實(shí)線表示。
Molinaro, C., Da Cunha, V., Gorlas, A., Iv, F., Gallais, L., Catchpole, R., ... & Baffou, G. (2021). Are bacteria claustrophobic? The problem of micrometric spatial confinement for the culturing of micro-organisms. RSC advances, 11(21), 12500-12506.
馬克斯普朗克研究所的Wolfgang Zachariae實(shí)驗(yàn)室使用含溫敏等位基因的酵母研究減數(shù)分裂過程中的染色體分離。VAHEAT可在選擇的時(shí)間點(diǎn)迅速控溫以達(dá)到實(shí)驗(yàn)要求的溫度,表達(dá)溫敏型cdc20-3的酵母在升溫后由于cdc20-3失活,減數(shù)分裂過程被阻斷;降溫后cdc20-3被激活,減數(shù)分裂繼續(xù)。
圖B:表達(dá)野生型CDC20(CDC20-mAR ama1)和溫敏型cdc20-3(cdc20ts-mAR ama1)的酵母。t = 50 min時(shí),溫度升至37°C,溫敏型菌株被阻斷在減數(shù)分裂中期II;t = 120 min時(shí),溫度降為25℃,溫敏型菌株進(jìn)入后期II。上圖,通過固定細(xì)胞的免疫熒光顯微定量細(xì)胞特征(每個(gè)時(shí)間點(diǎn)n = 100);下圖,減數(shù)分裂II期細(xì)胞中DNA,紡錘體和Pds1-myc18的染色。
Mengoli, V., Jonak, K., Lyzak, O., Lamb, M., Lister, L. M., Lodge, C., ... & Zachariae, W. (2021). Deprotection of centromeric cohesin at meiosis II requires APC/C activity but not kinetochore tension. The EMBO journal, 40(7), e106812.
二、 DNA折紙
慕尼黑工業(yè)大學(xué)的Hendrik Dietz實(shí)驗(yàn)室利用DNA折紙構(gòu)建了一種大分子運(yùn)輸系統(tǒng)。VAHEAT用于單分子TIRF成像時(shí)的精確溫度控制。單分子TIRF等高分辨率成像技術(shù)容易受溫度變化導(dǎo)致的熱漂移影響,VAHEAT能夠保證溫度穩(wěn)定保持在設(shè)定值,僅有0.01℃波動(dòng),進(jìn)而提高成像準(zhǔn)確度。
圖a:左:聚合反應(yīng)和微絲端部封頂?shù)氖疽鈭D;右:瓊脂糖凝膠的激光掃描圖像。圖b:封頂?shù)奈⒔z的負(fù)染透射電鏡成像。
圖c:左:聚合微絲的負(fù)染透射電子顯微鏡成像。右:聚合微絲的TIRF成像,分子活塞(綠色)位于微絲(紅色)內(nèi)部。
圖d:TIRF電影中取自單幀的典型序列,反映了活塞沿著絲狀物的移動(dòng)。底部:整個(gè)電影(6000幀,幀速率= 10 / s)的平均圖像的標(biāo)準(zhǔn)偏差,說明活塞已經(jīng)沿著這條約3μm長的絲狀物行程全長移動(dòng)。
Stömmer, P., Kiefer, H., Kopperger, E., Honemann, M. N., Kube, M., Simmel, F. C., ... & Dietz, H. (2021). A synthetic tubular molecular transport system. Nature Communications, 12(1), 4393.
三、納米顆粒的iSCAT成像
馬克斯普朗克光學(xué)科學(xué)研究所的Vahid Sandoghdar實(shí)驗(yàn)室致力于研究干涉散射(iSCAT)顯微技術(shù)。VAHEAT用于表征金納米顆粒擴(kuò)散系數(shù)與溫度的關(guān)系。使用VAHEAT調(diào)整30 nm的金納米顆粒的溫度并檢測擴(kuò)散系數(shù),測量結(jié)果與使用金納米顆粒的流體力學(xué)直徑(實(shí)線)計(jì)算出的擴(kuò)散系數(shù)基本一致。
金納米顆粒直徑與擴(kuò)散系數(shù)的關(guān)系。小圖:30 nm金納米顆粒在不同溫度下的擴(kuò)散系數(shù)。
Kashkanova, A. D., Blessing, M., Gemeinhardt, A., Soulat, D., & Sandoghdar, V. (2022). Precision size and refractive index analysis of weakly scattering nanoparticles in polydispersions. Nature methods, 19(5), 586-593.
VAHEAT發(fā)布雖然僅有短短兩年時(shí)間,但是全球已經(jīng)有近百個(gè)實(shí)驗(yàn)室引入,憑借其獨(dú)特的性能與穩(wěn)定性,助力科學(xué)家取得一個(gè)又一個(gè)突破,也獲得國內(nèi)外廣大科研工作者的一致關(guān)注與好評(píng):
部分用戶評(píng)價(jià):
“我實(shí)驗(yàn)室有一部分研究是秀麗隱桿線蟲種系中的轉(zhuǎn)錄因子和液-液相分離。溫度依賴性是顯示蛋白質(zhì)焦點(diǎn)是否由相變機(jī)制形成的更好方法之一。過去我們用自制的系統(tǒng)做過溫度依賴性實(shí)驗(yàn),我知道這有多難。相比之下,VAHEAT系統(tǒng)非常容易在許多顯微鏡和樣品中使用。我們將其用于秀麗隱桿線蟲、斑馬魚和單細(xì)胞。” |
|
Dr. Senthil Arumugam
EMBL Australia/Monash University |
|
“我有機(jī)會(huì)在伍茲霍爾生理學(xué)課程中與VAHEAT合作。我們將VAHEAT與我們定制的微流控設(shè)備相結(jié)合,并對(duì)許多不同物種的活古菌細(xì)胞進(jìn)行成像,以獲得單細(xì)胞生長曲線。借助VAHEAT出色的溫度控制以實(shí)現(xiàn)在長時(shí)間內(nèi)創(chuàng)建梯度變化,以優(yōu)化混合種群的生長。VAHEAT對(duì)于研究具有挑戰(zhàn)性的溫度范圍課題的細(xì)胞生物學(xué)家來說是一個(gè)很好的工具,而且它可以更好地利用更大的加熱表面積來允許多流體通道進(jìn)行高通量成像。” |
|
Dr. Alexandre Bisson Brandeis University |
|
|
|
Prof. Hendrik Dietz
TU Munich |
|
|
|
Dr. Kerstin Göpfrich MPI for Medical Research, Heidelberg |
|
“我們使用VAHEAT將低分子量聚合物加熱到略高于其玻璃化轉(zhuǎn)變溫度的溫度,以研究這些系統(tǒng)中單分子水平的分子運(yùn)動(dòng)和動(dòng)態(tài)異質(zhì)性。VAHEAT使我們能夠?qū)崿F(xiàn)并保持蓋玻片所需的溫度控制,這反過來又使我們能夠同時(shí)進(jìn)行高分辨成像,最大限度地收集光子并限制熒光探針的定位誤差。這種功能有助于表征這些復(fù)雜系統(tǒng)中的平移遷移率。” |
|
Prof. Laura Kaufman Columbia University, New York City |
VAHEAT部分客戶:
VAHEAT部分發(fā)表文獻(xiàn):
1. An inkjet-printable fluorescent thermal sensor based on CdSe/ZnS quantum dots immobilised in a silicone matrix. Sensors and Actuators A, 2022.
2. Colloidal black gold with broadband absorption for photothermal conversion and plasmon-assisted crosslinking of thiolated diazonium compound. ChemRxiv, 2022.
3. Mechanistic Insights into the Phase Separation Behavior and Pathway-Directed Information Exchange in all-DNA Droplets. Angewandte Chemie, 2022.
4. Reversible speed control of one-stimulus-double-response, temperature-sensitive asymmetric hydrogel micromotors. Chemical Communications, 2022
5. Progress and Challenges in Archaeal Cell Biology. In: Ferreira-Cerca, S. (eds) Archaea. Methods in Molecular Biology, 2022.
6. Phase-separation antagonists potently inhibit transcription and broadly increase nucleosome density. Journal of Biological Chemistry, 2022
7. A DNA Segregation Module for Synthetic Cells. Small, 2022
8. Precision size and refractive index analysis of weakly scattering nanoparticles in polydispersions. Nature Methods, 2022
9. The Spo13/Meikin pathway confines the onset of gamete differentiation to meiosis II in yeast. EMBO Journal, 2022
10. Microscale Thermophoresis in Liquids Induced by Plasmonic Heating and Characterized by Phase and Fluorescence Microscopies. The Journal of Physical Chemistry C, 2022.
11. A synthetic tubular molecular transport system. Nature Communications, 2021.
12. Deprotection of centromeric cohesin at meiosis II requires APC/C activity but not kinetochore tension. EMBO Journal, 2021.
13. Are bacteria claustrophobic? The problem of micrometric spatial confinement for the culturing of microorganisms. RSC Advances, 2021.